Skip to main content

4 Big Data Myths - Part I



It was cloud then and it's Big Data now. Every time there's a new disruptive category it creates a lot of confusion. These categories are not well-defined. They just catch on. What hurts the most is the myths. This is the first part of my two-part series to debunk Big Data myths.

Myth # 4: Big Data is about big data

It's a clear misnomer. "Big Data" is a name that sticks but it's not just about big data. Defining a category just based on size of data appears to be quite primitive and rather silly. And, you could argue all day about what size of data qualifies as "big." But, the name sticks, and that counts. The insights could come from a very small dataset or a very large data set. Big Data is finally a promise not to discriminate any data, small or large.

It has been prohibitively expensive and almost technologically impossible to analyze large volumes of data. Not any more. Today, technology — commodity hardware and sophisticated software to leverage this hardware — changes the way people think about small and large data. It's a data continuum. Big Data is not just about technology, either. Technology is just an enabler. It has always been. If you think Big Data is about adopting new shiny technology, that's very limiting. Big Data is an amalgamation of a few trends - data growth of a magnitude or two, external data more valuable than internal data, and shift in computing business models. The companies mainly looked at their operational data, invested into expensive BI solutions, and treated those systems as gold. Very few in a company got very little value out of those systems.

Big Data is about redefining what data actually means to you. Examine the sources that you never cared to look at before, instrument your systems to generate the kind of data that are valuable to you and not to your software vendor. This is not about technology. This is about completely new way of doing business where data finally gets the driver's seat. The conversations about organizations' brands and their competitors' brands are happening in social media that they neither control nor have a good grasp of. At Uber, Bradly Voytek, a neuroscientist is looking at interesting ways to analyze real-time data to improve the way Uber does business. Recently, Target came under fire for using data to predict future needs of a shopper. Opportunities are in abundance.

Myth # 3: Big Data is for expert users    

The last mile of Big Data is the tools. As technology evolves the tools that allow people to interact with data have significantly improved, as well. Without these tools the data is worth nothing. The tools have evolved in all categories ranging from simple presentation charting frameworks to complex tools used for deep analysis. With rising popularity and adoption of HTML 5 and people's desire to consume data on tablets, the investment in presentation side of the tools have gone up. Popular javascript frameworks such as D3 have allowed people to do interesting things such as creating a personal annual report. Availability of a various datasets published by several public sector agencies in the US have also spurred some creative analysis by data geeks such as this interactive report that tracks money as people move to different parts of the country.

The other exciting trend has been the self-service reporting in the cloud and better abstraction tools on top of complex frameworks such as Hadoop. Without self-service tools most people will likely be cut off from the data chain even if they have access to data they want to analyze. I cannot overemphasize how important the tools are in the Big Data value chain. They make it an inclusive system where more people can participate in data discovery, exploration, and analysis. Unusual insights rarely come from experts; they invariably come from people who were always fascinated by data but analyzing data was never part of their day-to-day job. Big Data is about enabling these people to participate - all information accessible to all people.

Coming soon in the Part II: Myth # 2 and Myth # 1.

Comments

Popular posts from this blog

15 YEARS OLD GIRL IMPREGNATED AND MAN RESPONSIBLE FOR IT TOOK FOR AN ABORTION THAT FAILED

BBI FACILITATE ARREST OF 35 YEARS OLD FOR DEFILEMENT, IMPREGNATING 15 YEARS OLD GIRL AND ABORTING FIVE MONTHS PREGNANCY IN ANAMBRA STATE. Today, at 1:26pm, We received a complaint from a concerned citizen who informed us of a 15yrs old girl brought into a hospital for medical treatment. Our intelligence team led by Director General Gwamnishu Emefiena Harrison Kenneth Nwaobi Ezika Kene and others left Asaba and arrived Ogidi Anambra state for investigation. 35yrs Chris Azuoma took the victim to hospital where she was injected and given abortion pills. She bled heavily and had complications and so decided to take her to a specialist hospital to evacuate the foetus. Getting to the hospital, we met the management and identified ourselves as Human rights group and they granted us permission to interview the victim. She confirmed the story and the perpetrator confessed forcefully having unprotected sexual intercourse with the victim. 2015 Administration of Criminal Justice permit private per...

Hacking Into The Indian Education System Reveals Score Tampering

Debarghya Das has a fascinating story on how he managed to bypass a silly web security layer to get access to the results of 150,000 ISCE (10th grade) and 65,000 ISC (12th grade) students in India. While lack of security and total ignorance to safeguard sensitive information is an interesting topic what is more fascinating about this episode is the analysis of the results that unearthed score tampering. The school boards changed the scores of the students to give them "grace" points to bump them up to the passing level. The boards also seem to have tampered some other scores but the motive for that tampering remains unclear (at least to me). I would encourage you to read the entire analysis and the comments , but a tl;dr version is: 32, 33 and 34 were visibly absent. This chain of 3 consecutive numbers is the longest chain of absent numbers. Coincidentally, 35 happens to be the pass mark. Here's a complete list of unattained marks - 36, 37, 39, 41, 43, 45, 47, 49, 51, 53,...

Reveiw: Celluon Epic Laser Keyboard

The Celluon Epic is a Bluetooth laser keyboard. The compact device projects a QWERTY keyboard onto most flat surfaces. (Glass tabletops being the exception) You can connect the Epic to vertically any device that supports Bluetooth keyboards including devices running iOS , Android , Windows Phone, and Blackberry 10. On the back of the device there is a charging port and pairing button. Once you have the Epic paired with your device it acts the same as any other keyboard. For any keyboard the most important consideration is the typing experience that it provides. The virtual keyboard brightness is adjustable and is easy to see in most lighting conditions. Unfortunately the brightness does not automatically adjust based on ambient light. With each keystroke a beeping sound is played which can be turned down. The typing experience on the Epic is mediocre at best. Inadvertently activating the wrong key can make typing frustrating and tiring. Even if you are a touch typist you'll still ...