Skip to main content

Analytics-first Enterprise Applications


This is the story of Tim Zimmer who has been working as a technician for one of the large appliance store chains. His job is to attend service calls for washers and dryers. He has seen a lot in his life; a lot has changed but a few things have stayed the same.

The 80's saw a rise of homegrown IT systems and 90's was the decade of standardized backend automation where a few large vendors as well as quite a few small vendors built and sold solutions to automate a whole bunch of backend processes. Tim experienced this firsthand. He started getting printed invoices that he could hand out to his customers. He also heard his buddies in finance talking about a week-long training class to learn "computers" and some tools to make journal entries. Tim's life didn't change much. He would still get a list of customers handed out to him in the morning. He would go visit them. He would turn-in a part-request form manually for the parts he didn't carry in his truck and life went on. Not knowing what might be a better way to work Tim always knew there must be a better way. Automation did help the companies run their business faster and helped increased their revenue and margins but the lives of their employees such as Tim didn't change much.

Mid to late 90's saw the rise of CRM and Self-Service HCM where vendors started referring to "resources" as "capital" without really changing the fundamental design of their products. Tim heard about some sales guys entering information into such systems after they had talked to their customers. They didn't quite like the system, but their supervisors and their supervisors' supervisors had asked them to do so. Tim thought somehow the company must benefit out of this but he didn't see his buddies' lives get any better. He did receive a rugged laptop to enter information about his tickets and resolutions. The tool still required him to enter a lot of data, screen by screen. He didn't really like the tool and the tool didn't make him any better or smarter, but he had no other choice but to use it.

Tim heard that the management gets weekly reports of all the service calls that he makes. He was told that the parts department uses this information to create a "part bucket" for each region. He thought it doesn't make any sense - by the time the management receives the part information, analyzes it, and gives me parts, I'm already on a few calls where I am running out of parts that I need. He also received an email from "Center of Excellence" (he couldn't tell what it is, but guessed, "must be those IT guys") whether he would like to receive some reports. He inquired. The lead time for what he thought was a simple report, once he submits a request, was 8-10 weeks and that "project" would require three levels of approval. He saw no value in it and decided not to pursue. While watching a football game, over beer, his buddy in IT told him that the "management" has bought very expensive software to run these reports and they are hiring a lot of people who would understand how to use it.

One day, he received a tablet. And he thought this must be yet another devious idea by his management to make him do more work that doesn't really help him or his customers. A fancy toy, he thought. For the first time in his life, the company positively surprised him. The tablet came with an app that did what he thought the tool should have done all along. As soon as he launched the app it showed him a graphical view of his service calls and parts required for those calls based on the historic analysis of those appliances. It showed him which trucks has what parts and which of his team members are better of visiting what set of customers based on their skill-set and their demonstrated ability in having solved those problems in the past. Tim makes a couple of clicks to analyze that data, drills down into line-item detail in realtime, and accepts recommendations with one click. He assigns the service calls to his team-members and drives his truck to a customer that he assigned to himself. As soon as he is done he pulls out his tablet. He clicks a button to acknowledge the completion of a service call. He is presented with new analysis updated in realtime with available parts in his truck as well as in his teammates' trucks. He clicks around, makes some decisions, cranks up the radio in his truck, and he is off to help the next customer. No more filling out any long meaningless screens. His view of his management has changed for good for the very first time.

As the world is moving towards building mobile-first or mobile-only applications I am proposing to build analytics-first enterprise applications that are mobile-only. Finally, we have access to sophisticated big data products, frameworks, and solutions that can help analyze large volume of data in real time. The large scale hardware — commodity, specialized, or virtualized — are accessible to the developers to do some amazing things. We are at an inflection point. There is no need to discriminate between transactional and analytic workload. Navigating from aggregated results to line-item details should just be one click instead of punching out into a separate system. There are many processes, if re-imagined without any pre-conceived bias, would start with an analysis at the very first click and will guide the user to a more fine-grained data-entry or decision-making screens. If mobile-first is the mindset to get the 20% of the scenarios of your application right that are used 80% of the times, the analytics-first is a design that should thrive to move the 20% of the decision-making workflows used 80% of the time that currently throw the end users into the maze of data entries and beautiful but completely isolated, outdated, and useless reports.

Let's rethink enterprise applications. Today's analytics is an end result of years of neglect to better understand human needs to analyze and decide as opposed to decide and analyze. Analytics should not be a category by itself disconnected from the workflows and processes that the applications have automated for years to make businesses better. Analytics should be an integral part of an application, not embedded, not contextual, but a lead-in.

Comments

Popular posts from this blog

15 YEARS OLD GIRL IMPREGNATED AND MAN RESPONSIBLE FOR IT TOOK FOR AN ABORTION THAT FAILED

BBI FACILITATE ARREST OF 35 YEARS OLD FOR DEFILEMENT, IMPREGNATING 15 YEARS OLD GIRL AND ABORTING FIVE MONTHS PREGNANCY IN ANAMBRA STATE. Today, at 1:26pm, We received a complaint from a concerned citizen who informed us of a 15yrs old girl brought into a hospital for medical treatment. Our intelligence team led by Director General Gwamnishu Emefiena Harrison Kenneth Nwaobi Ezika Kene and others left Asaba and arrived Ogidi Anambra state for investigation. 35yrs Chris Azuoma took the victim to hospital where she was injected and given abortion pills. She bled heavily and had complications and so decided to take her to a specialist hospital to evacuate the foetus. Getting to the hospital, we met the management and identified ourselves as Human rights group and they granted us permission to interview the victim. She confirmed the story and the perpetrator confessed forcefully having unprotected sexual intercourse with the victim. 2015 Administration of Criminal Justice permit private per

Hacking Into The Indian Education System Reveals Score Tampering

Debarghya Das has a fascinating story on how he managed to bypass a silly web security layer to get access to the results of 150,000 ISCE (10th grade) and 65,000 ISC (12th grade) students in India. While lack of security and total ignorance to safeguard sensitive information is an interesting topic what is more fascinating about this episode is the analysis of the results that unearthed score tampering. The school boards changed the scores of the students to give them "grace" points to bump them up to the passing level. The boards also seem to have tampered some other scores but the motive for that tampering remains unclear (at least to me). I would encourage you to read the entire analysis and the comments , but a tl;dr version is: 32, 33 and 34 were visibly absent. This chain of 3 consecutive numbers is the longest chain of absent numbers. Coincidentally, 35 happens to be the pass mark. Here's a complete list of unattained marks - 36, 37, 39, 41, 43, 45, 47, 49, 51, 53,

Reveiw: Celluon Epic Laser Keyboard

The Celluon Epic is a Bluetooth laser keyboard. The compact device projects a QWERTY keyboard onto most flat surfaces. (Glass tabletops being the exception) You can connect the Epic to vertically any device that supports Bluetooth keyboards including devices running iOS , Android , Windows Phone, and Blackberry 10. On the back of the device there is a charging port and pairing button. Once you have the Epic paired with your device it acts the same as any other keyboard. For any keyboard the most important consideration is the typing experience that it provides. The virtual keyboard brightness is adjustable and is easy to see in most lighting conditions. Unfortunately the brightness does not automatically adjust based on ambient light. With each keystroke a beeping sound is played which can be turned down. The typing experience on the Epic is mediocre at best. Inadvertently activating the wrong key can make typing frustrating and tiring. Even if you are a touch typist you'll still